73 research outputs found

    Tundra shrubification and tree-line advance amplify arctic climate warming:results from an individual-based dynamic vegetation model

    Get PDF
    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux

    Deep mixed ocean volume in the Labrador Sea in HighResMIP models

    Get PDF
    Simulations from seven global coupled climate models performed at high and standard resolution as part of the high resolution model intercomparison project (HighResMIP) are analyzed to study deep ocean mixing in the Labrador Sea and the impact of increased horizontal resolution. The representation of convection varies strongly among models. Compared to observations from ARGO-floats and the EN4 data set, most models substantially overestimate deep convection in the Labrador Sea. In four out of five models, all four using the NEMO-ocean model, increasing the ocean resolution from 1° to 1/4° leads to increased deep mixing in the Labrador Sea. Increasing the atmospheric resolution has a smaller effect than increasing the ocean resolution. Simulated convection in the Labrador Sea is mainly governed by the release of heat from the ocean to the atmosphere and by the vertical stratification of the water masses in the Labrador Sea in late autumn. Models with stronger sub-polar gyre circulation have generally higher surface salinity in the Labrador Sea and a deeper convection. While the high-resolution models show more realistic ocean stratification in the Labrador Sea than the standard resolution models, they generally overestimate the convection. The results indicate that the representation of sub-grid scale mixing processes might be imperfect in the models and contribute to the biases in deep convection. Since in more than half of the models, the Labrador Sea convection is important for the Atlantic Meridional Overturning Circulation (AMOC), this raises questions about the future behavior of the AMOC in the models

    Impact of higher spatial atmospheric resolution on precipitation extremes over land in global climate models

    Get PDF
    Finer grids in global climate models could lead to an improvement in the simulation of precipitation extremes. We assess the influence on model performance of increasing spatial resolution by evaluating pairs of high‐ and low‐resolution forced atmospheric simulations from six global climate models (generally the latest CMIP6 version) on a common 1° × 1° grid. The differences in tuning between the lower and higher resolution versions are as limited as possible, which allows the influence of higher resolution to be assessed exclusively. We focus on the 1985–2014 climatology of annual extremes of daily precipitation over global land, and models are compared to observations from different sources (i.e., in situ‐based and satellite‐based) to enable consideration of observational uncertainty. Finally, we address regional features of model performance based on four indices characterizing different aspects of precipitation extremes. Our analysis highlights good agreement between models that precipitation extremes are more intense at higher resolution. We find that the spread among observations is substantial and can be as large as intermodel differences, which makes the quantitative evaluation of model performance difficult. However, consistently across the four precipitation extremes indices that we investigate, models often show lower skill at higher resolution compared to their corresponding lower resolution version. Our findings suggest that increasing spatial resolution alone is not sufficient to obtain a systematic improvement in the simulation of precipitation extremes, and other improvements (e.g., physics and tuning) may be required

    Predicted chance that global warming will temporarily exceed 1.5 °C

    Get PDF
    The Paris Agreement calls for efforts to limit anthropogenic global warming to less than 1.5 °C above preindustrial levels. However, natural internal variability may exacerbate anthropogenic warming to produce temporary excursions above 1.5 °C. Such excursions would not necessarily exceed the Paris Agreement, but would provide a warning that the threshold is being approached. Here we develop a new capability to predict the probability that global temperature will exceed 1.5 °C above preindustrial levels in the coming 5 years. For the period 2017 to 2021 we predict a 38% and 10% chance, respectively, of monthly or yearly temperatures exceeding 1.5 °C, with virtually no chance of the 5‐year mean being above the threshold. Our forecasts will be updated annually to provide policy makers with advanced warning of the evolving probability and duration of future warming events

    Sensitivity of the Atlantic meridional overturning circulation to model resolution in CMIP6 HighResMIP simulations and implications for future changes

    Get PDF
    A multi‐model, multi‐resolution ensemble using CMIP6 HighResMIP coupled experiments is used to assess the performance of key aspects of the North Atlantic circulation. The Atlantic Meridional Overturning Circulation (AMOC), and related heat transport, tends to become stronger as ocean model resolution is enhanced, better agreeing with observations at 26.5°N. However for most models the circulation remains too shallow compared to observations, and has a smaller temperature contrast between the northward and southward limbs of the AMOC. These biases cause the northward heat transport to be systematically too low for a given overturning strength. The higher resolution models also tend to have too much deep mixing in the subpolar gyre. In the period 2015‐2050 the overturning circulation tends to decline more rapidly in the higher resolution models, which is related to both the mean state and to the subpolar gyre contribution to deep water formation. The main part of the decline comes from the Florida Current component of the circulation. Such large declines in AMOC are not seen in the models with resolutions more typically used for climate studies, suggesting an enhanced risk for Northern Hemisphere climate change. However, only a small number of different ocean models are included in the study

    Global exposure of population and land‐use to meteorological droughts under different warming levels and SSPs: a CORDEX‐based study

    Get PDF
    Global warming is likely to cause a progressive drought increase in some regions, but how population and natural resources will be affected is still underexplored. This study focuses on global population, forests, croplands and pastures exposure to meteorological drought hazard in the 21st century, expressed as frequency and severity of drought events. As input, we use a large ensemble of climate simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), population projections from the NASA-SEDAC dataset and land-use projections from the Land-Use Harmonization 2 project for 1981–2100. The exposure to drought hazard is presented for five Shared Socioeconomic Pathways (SSP1-SSP5) at four Global Warming Levels (GWLs: 1.5°C to 4°C). Results show that considering only Standardized Precipitation Index (SPI; based on precipitation), the SSP3 at GWL4 projects the largest fraction of the global population (14%) to experience an increase in drought frequency and severity (versus 1981–2010), with this value increasing to 60% if temperature is considered (indirectly included in the Standardized Precipitation-Evapotranspiration Index, SPEI). With SPEI, considering the highest GWL for each SSP, 8 (for SSP2, SSP4, SSP5) and 11 (SSP3) billion people, that is, more than 90%, will be affected by at least one unprecedented drought. For SSP5 at GWL4, approximately 2 × 106^{6} km2^{2} of forests and croplands (respectively, 6% and 11%) and 1.5 × 106^{6} km2^{2} of pastures (19%) will be exposed to increased drought frequency and severity according to SPI, but for SPEI this extent will rise to 17 × 106^{6} km2^{2} of forests (49%), 6 × 106^{6} km2^{2} of pastures (78%) and 12 × 106^{6} km2^{2} of croplands (67%), being mid-latitudes the most affected. The projected likely increase of drought frequency and severity significantly increases population and land-use exposure to drought, even at low GWLs, thus extensive mitigation and adaptation efforts are needed to avoid the most severe impacts of climate change

    WMO Global Annual to Decadal Climate Update A Prediction for 2021-25

    Get PDF
    Under embargo until: 2022-10-01As climate change accelerates, societies and climate-sensitive socioeconomic sectors cannot continue to rely on the past as a guide to possible future climate hazards. Operational decadal predictions offer the potential to inform current adaptation and increase resilience by filling the important gap between seasonal forecasts and climate projections. The World Meteorological Organization (WMO) has recognized this and in 2017 established the WMO Lead Centre for Annual to Decadal Climate Predictions (shortened to “Lead Centre” below), which annually provides a large multimodel ensemble of predictions covering the next 5 years. This international collaboration produces a prediction that is more skillful and useful than any single center can achieve. One of the main outputs of the Lead Centre is the Global Annual to Decadal Climate Update (GADCU), a consensus forecast based on these predictions. This update includes maps showing key variables, discussion on forecast skill, and predictions of climate indices such as the global mean near-surface temperature and Atlantic multidecadal variability. it also estimates the probability of the global mean temperature exceeding 1.5°C above preindustrial levels for at least 1 year in the next 5 years, which helps policy-makers understand how closely the world is approaching this goal of the Paris Agreement. This paper, written by the authors of the GADCU, introduces the GADCU, presents its key outputs, and briefly discusses its role in providing vital climate information for society now and in the future.publishedVersio

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.Peer reviewe

    Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution

    Get PDF
    This study undertakes a multi-model comparison with the aim to describe and quantify systematic changes of the global energy and water budgets when the horizontal resolution of atmospheric models is increased and to identify common factors of these changes among models. To do so, we analyse an ensemble of twelve atmosphere-only and six coupled GCMs, with different model formulations and with resolutions spanning those of state-of-the-art coupled GCMs, i.e. from resolutions coarser than 100 km to resolutions finer than 25 km. The main changes in the global energy budget with resolution are a systematic increase in outgoing longwave radiation and decrease in outgoing shortwave radiation due to changes in cloud properties, and a systematic increase in surface latent heat flux; when resolution is increased from 100 to 25 km, the magnitude of the change of those fluxes can be as large as 5 W m−2. Moreover, all but one atmosphere-only model simulate a decrease of the poleward energy transport at higher resolution, mainly explained by a reduction of the equator-to-pole tropospheric temperature gradient. Regarding hydrological processes, our results are the following: (1) there is an increase of global precipitation with increasing resolution in all models (up to 40 × 103 km3 year−1) but the partitioning between land and ocean varies among models; (2) the fraction of total precipitation that falls on land is on average 10% larger at higher resolution in grid point models, but it is smaller at higher resolution in spectral models; (3) grid points models simulate an increase of the fraction of land precipitation due to moisture convergence twice as large as in spectral models; (4) grid point models, which have a better resolved orography, show an increase of orographic precipitation of up to 13 × 103 km3 year−1 which explains most of the change in land precipitation; (5) at the regional scale, precipitation pattern and amplitude are improved with increased resolution due to a better simulated seasonal mean circulation. We discuss our results against several observational estimates of the Earth's energy budget and hydrological cycle and show that they support recent high estimates of global precipitation
    corecore